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Deliverable: 5.5 

Chemical effects on microbial ecological functions 

 

 

The PhD project of ESR 9 (Sabrina Roth) has shifted from the main focus being chemical 
effects on microbial communities to various types of effects of chemicals on aquatic biota 
during global change. This change of plan was described in the ECORISK2050 half-time report. 
The deliverable 5.5 describes the main outcomes of the PhD project so far, which relate to the 
impact of chemicals on individual organisms as well as on ecosystem structure. The project is 
divided into four subparts: 
 
 
 

1. Using chemical activity to identify chemical mixture effects on the model organism 
Daphnia magna 

Chemicals occur in mixtures in the environment, which makes it difficult and complex 
to identify their effects. The two main reasons are: 1) measuring concentrations of all 
potential contaminants in the environment is unrealistic due to the technical challenges 
and analytical costs, and 2) the sum of the measured concentrations of different 
chemicals does not inform us about the exposure levels, because toxic concentrations 
are compound-specific. This makes the exposure, hazard, and risk assessments of 
chemical mixtures in the environment extremely challenging (Gobas et al., 2018). The 
concept of ‘chemical activity’ offers a way to overcome these constraints for chemical 
mixtures of neutral chemicals at concentrations below their specific toxicity 

Ref. Ares(2022)112206 - 07/01/2022



concentration, by enabling the conversion of concentrations of various chemicals into a 
common, unitless, currency (Gobas et al., 2018). In such cases, when many neutral 
organic chemicals are present at low concentrations, additivity of toxicity is often 
observed (Escher et al., 2002). This holds true even when the substances are not related 
chemically, or exhibit different modes of action when acting alone at acute levels 
(Escher and Hermens, 2002). The phenomenon is defined as baseline toxicity, or 
narcosis (Escher et al., 2002) and is related to disturbances in cell membrane 
functioning. Chemical activity relates a chemical’s concentration to its maximum 
solubility in the environmental media (Gobas et al., 2018; Schwarzenbach, Rene P.; 
Gschwend, Philip M.; Imboden, 2003), it is additive, and correlates to baseline toxicity, 
thereby offering an integrative tool to quantify the biological potency of chemical 
mixtures in background areas addressing the following research questions and aims of 
this study. 
The model organism Daphnia magna is used to test the effect of different chemical 
mixtures (PAHs, PCBs) at environmentally relevant concentrations using passive 
dosing with silicone rods (Fig. 1).  

 
 

 
Figure 1: Passive dosing set-up. PAHs and PCBs crystals will be used to prepare saturated solutions in methanol that will further 
be used to load silicone rods with the needed chemical activity. These rods will be used to expose Daphnia magna to the intended 
chemical activities.  
 
 
 
 
Several pre-studies have been conducted to test and improve the experimental setup, to 
identify the optimal chemical activity range for exposure, to test the loading of the water 
phase for the experimental set up (Fig. 2A-C), and to identify the optimal exposure time 
(48 hours; Fig. 2D). The main experiment is currently under preparation. Additionally 
to the control (i.e., no chemical treatment), the study organism Daphnia magna will be 
exposed to a PAH-mixture, a PCB-mixture, a single PAH compound (acenaphthene), 
and a single PCB compound (PCB-153). The PAH-mixture will consist of four 
compounds (acenaphthene, acenaphthylene, fluorene, fluoranthene) and the PCB-
mixture of five compounds (PCBs 28, 101, 52, 138, 118, 153). To identify non-lethal 
effects, biomarkers (DNA/RNA ratio, proteins) will be analyzed. 

 



 
 
 
 
Figure 2: A-C. Water phase loading. Loading of the water phase using loaded silicone rods has been tested with fluoranthene at 
a=0.01 (A), PCB-153 at a=0.01 (B), and fluoranthene a=0.05 (C). The water phase has been analysed via GCMS to confirm the 
exposure concentration. D. Daphnia magna have been exposed to a PAH mixture of six compounds (acenaphthylene, acenaphthene, 
fluorene, anthracene, fluoranthene, benzo[a]pyrene) over different time periods (12, 24, 48, 72, and 96 hours). The chemical 
concentrations of the compounds have been extracted from the animals, to identify the time when the PAHs have reached 
equilibrium between the exposure media and the animals.  
 
 

 
2. Combined effects of heatwaves and an herbicide on freshwater zooplanktonic 

communities  
 
Understanding the impacts of climate change and its extreme events, particularly 
heatwaves, on aquatic ecosystems requires exploring interactions with other 
anthropogenic stressors, such as pesticide pollution. Freshwater planktonic 
communities are important energy suppliers for higher trophic levels and play a key role 
in gross primary production and community respiration in aquatic ecosystems. 
However, these ecosystems suffer from pesticide pollution caused by unintentional 
exposure via spray drift and runoff. The herbicide terbuthylazine serves as alternative 
pesticide to atrazine, which is banned in the EU (Bethsass and Colangelo, 2006; 
Stipičević et al., 2015), yet, it has demonstrated lethal effects on phytoplankton 
communities, leading to indirect starvation of zooplankton (Pereira et al., 2017).  
As part of the ECORISK secondment from ESR 9 (Sabrina Roth) at the IMDEA Water 
institute, an indoor microcosm experiment was performed together with ESR 8 
(Francesco Polazzo) and the local supervisor Andreu Rico. Natural freshwater 
zooplanktonic communities were exposed to a simulated heatwave (one-week duration) 
and the herbicide terbuthylazine (15 µg/L) in different combinations of the two stressors 
to identify whether the combination of both stressors causes higher vulnerability in the 
zooplankton community as if applied alone.  
The changes within the zooplankton community composition, total abundance, taxa 
richness, and taxa diversity were assessed. 
Findings revealed that the heatwave increased the total zooplankton abundance, likely 
due to metabolism stimulation (Brown et al., 2004) (Fig. 3B), whereas the 
terbuthylazine application shifted the zooplankton community composition indirectly 
due to effects on phytoplankton (Fig. 3A). The combination of both stressors, i.e., 
heatwave + terbuthylazine, resulted in additive effects, in which terbuthylazine effects 
predominate, reducing the phytoplankton abundance and, thus, affecting the 
zooplankton community indirectly via the lacking food availability. Impacts on 
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zooplankton communities, being at the base of the aquatic food web, may escalate up 
the food chain, potentially causing consequences for freshwater ecosystems.  
This experiment helped to better understand the effect on zooplankton communties 
when exposed to multiple stressors.  

 

        
Figure 3: A. The Principal Component Analysis (PCA) indicating the relationship between the stressors (control, heatwave, 
terbuthylazine, both in combination) and the individual taxa on day 14. The length and direction of the arrows indicate the influence 
of each stressor for each taxon, respectively. B Total abundance was measured over time in all treatments: control (blue), heatwave 
(HW, red), terbuthylazine (TER, green), and the combination of heatwave and terbuthylazine (HW+TER, yellow). Each error bar 
is constructed using one standard error from the mean. 
 
 
 

3. Combined effects of heatwaves and micropollutants on various trophic levels in 
freshwater ecosystems, including microbial communities 

Microbial communities are essential drivers of biogeochemical cycles (Falkowski et al., 
2008) and ecosystem functioning, both in terrestrial (Laforest-Lapointe et al., 2017; 
Young and Crawford, 2004) and aquatic ecosystems (Caston et al., 2009). Aligning with 
the species-sorting model (Leibold et al., 2004), microbial communities are shaped by 
the local environment (Logue and Lindström, 2010), such as temperature (Ziegler et al., 
2019), salinity (Herlemann et al., 2011), resource availability (Pradeep Ram et al., 
2020), or environmental degradation processes (Mykrä et al., 2017). Concurrently, they 
can react rapidly (within minutes) to changes in the surrounding environment (Salman 
and Libchaber, 2007; Siliakus et al., 2017). These changes and fast adaptation of 
survival strategies are facilitated by short generation times and other mechanisms, like 
cell membrane modification or changes in biochemical processes (Siliakus et al., 2017; 
Smith and Romesberg, 2007). Due to their fast response to stressors, microbial 
communities have been used to identify alterations in anthropogenic pollution (Torres 
et al., 2019), water temperature (Ziegler et al., 2017), or water quality (Santos et al., 
2019) in various ecosystems. Albeit microbial communities convey high potential to be 
used as bioindicators of physical, chemical, and biological measures upon ecosystem 
health (Astudillo-García et al., 2019), knowledge is still scarce when it comes to 
multiple stressor effects involving temperature fluctuations such as HWs in combination 
with chemicals. 

Within the ECORISK2050 WP5 Effects, the ESR numbers 7 (Markus Hermann), 8 
(Francesco Polazzo), 9 (Sabrina Roth), and 10 (Annika Mangold-Döring), worked on a 
review article under the supervision of the supervisors (Anna Sobek, Paul van den Brink, 
Andreu Rico) and an invited expert from the field (Michelle Jackson, Oxford 
University). This review article (https://doi.org/10.1111/gcb.15971) has been published 
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in Global Change Biology in November 2021, focussing on the combined effects of 
heatwaves and micropollutants on various trophic levels in freshwater ecosystems, 
including microbial communities. A scoping review (Munn et al., 2018) was performed 
to gather the available knowledge on the impact of heatwaves alone and in combination 
with micropollutants on different trophic levels within freshwater ecosystems and 
identify potential knowledge gaps. Initially, data on the effects of heatwaves on different 
trophic levels in freshwater systems was assembled, interpretated, and transformed into 
information on effects on entire food webs (Fig. 4).  

 
Figure 4.  Graphical representation synthesizing the results found in the literature on the effects of heatwaves on aquatic food- webs. Arrows 
connecting different organism groups indicate trophic and/or indirect effects. Upward arrows indicate an increase/raise and downward arrows 
indicate a decrease of the evaluated ecological parameter. Numbers in brackets refer to references: (1) Duarte et al. (2013), (2) Donnelly et al. 
(1990), (3) Fernandes et al. (2012), (4) Stelzer et al. (2003), (5) Zeng et al. (2014), (6) Zamarreňo et al. (2009), (7) Höfle (1979), (8) Remy et 
al. (2017), (9) Egger et al. (2012), (10) Velthuis et al. (2017), (11) O’Connor et al. (2009), (12) Maazouzi et al. (2008), (13) Bergkemper and 
Weisse (2017), (14) Weisse et al. (2016), (15) Bertani et al. (2016), (16) Hansson et al. (2020), (17) Li et al. (2017), (18) Mameri et al. (2020), 
(19) Carreira et al. (2016), (20) Nguyen et al. (2020), (21) Johnsen et al. (2020), (22) Cremona et al. (2020), (23) DeWhatley and Alexander 
(2018), (24) Leicht and Seppälä (2019), (25) Carreira et al. (2020), (26) Zhang et al. (2020), (27) Vander Vorste et al. (2017), (28) Prato et al. 
(2008), (29) Fornaroli et al. (2020), (30) Hao et al. (2020), (31) Piggott et al. (2015), (32) Bondar- Kunze et al. (2021) 

 
Further, it was looked in detail into the potential consequences of the effects of both 
stressors, heatwaves and micropollutants in combination, on the individual trophic 
levels (1), microbial communities, (2) primary producers, (3) consumers, and (4) 
predators. 
Findings revealed that microbial communities living in aquatic environments, are 
exposed to complex mixtures of micropollutants (Escher et al., 2020), still it remains 
unknown how these communities might react towards additional extreme event 
stressors, such as heatwaves. Several fluxes and processes, e.g., degradation, nutrient 
cycling, or growth, may be disturbed by the effects of both stressors, i.e., heatwave and 
micropollutants, applied in combination (Fig. 5). Studies have shown that exposure to 
heatwaves alone may shift entire community compositions and may, possibly, increase 
the sensitivity towards chemical stressors. This study emphasises the importance of the 
ecological functions of microbial communities for the entire ecosystem and highlights 
that the ability of microbial communities to recover from and their resilience towards 



extreme climate events is still understudied but urgently needed to help identify their 
thresholds in a changing climate (Bardgett and Caruso, 2020).  

 
 

Figure 5. Conceptual overview of the potential combined effects of heatwaves and chemicals on microbial communities. Black upward or 
downward arrows indicate an increase or decrease of the respective processes. Grey arrows indicate direct and indirect effects on other 
processes. The thermometer symbol indicates an effect related to temperature only, whereas the symbols of the thermometer and of the chemical 
together indicate a combined effect of both. (1) Bighiu & Goedkoop (2021), (2) Zeng et al. (2014), (3) Zamarreňo et al. (2009), (4) Höfle 
(1979), (5) White et al. (1991), (6) Berthelot et al. (2019), (7) Hayes et al. (2019), (8) Klausmeier et al. (2004), (9) Duarte et al. (2013), (10) 
Donnelly et al. (1990), (11) Stelzer et al. (2003), (12) Fernandes et al. (2012), (13) Phillips et al. (2017), (14) Kaushik and Hynes (1971), (15) 
Pomeroy and Wiebe (1988), (16) Delnat et al. (2021), (17) Wickham et al. (2020), and (18) Arias Font et al. (2021) 

 
 

4. Effects of global climate change on the human exposure of chemicals from the 
Swedish environment  
 
As part of the ECORISK secondment of ESR 9 (Sabrina Roth) at the Swedish 
Environmental Protection Agency (November – December 2021), a literature review is 
currently in progress to gather and synthesize information on future human exposure to 
chemicals occurring in the environment and how these exposures may be influenced by 
climate change. This literature review will help to synthesise data for a modelling 
component that will be used to establish the prediction of three different future scenarios 
in Sweden. This project is a cooperation with the Swedish Environmental Protection 
Agency (Naturvårdsverket) which has been added as ECORISK partner to the 
consortium in October 2021.  
The review envisions to cover the following subsections: 1) indoor air quality, 2) 
flooding, 3) droughts, 4) landslides, 5) pesticide use, 6) environmental toxins in food, 
and 7) UV radiation.  
 
In the scope of global climate change, the temperatures in Sweden are expected to rise 
by 3-6°C until 2100 (Eklund et al., 2015). In an emission model used by Kong and 
colleagues (2014) (Kong et al., 2014), changing temperature was identified as the most 
important driving factor of chemical emissions by climate change. The authors 
predicted an increase of chemical concentrations in air by a factor of up to 2.8 caused 
by increased temperature (Kong et al., 2014). Researchers conclude that climate change 
is likely to increase the human exposure to chemicals originating from agriculture 
(Boxall et al., 2009). Climate change is not only likely to modify the essential 
organisation and ecosystem functioning of environmental systems, but it is also highly 



likely affecting the mobility and harmfulness of chemical pollutants (Noyes et al., 
2009).  
In Northern Europe as a whole, future precipitation is projected to increase on average  
(Jacob et al., 2014; Strandberg et al., 2015), and flood events may result not only in the 
chemical contamination of surface waters, but also carry the contamination also further 
on to both soil or ground water (Cozzani et al., 2010). 
As per the European Environmental Agency (EEA), in most of Europe droughts are 
expected to occur more frequently with higher intensity and duration in the future 
(Campana et al., 2018; “European Drought Centre,” 2021). During droughts, more 
oxygen can enter soils which leads to more oxidation of organic matter and reduction 
of inorganics (e.g., sulfides) (Stirling et al., 2020). This oxidation causes acidification 
of the soil, mobilizes metals, and negatively impacts the water quality (Stirling et al., 
2020). 
Additionally, with raising temperatures, the pesticide applications are expected to 
increase together with growing crop pest pressures after milder winters (Reilly et al., 
2001). Although warmer temperatures may reduce the risk caused by  pesticides, the 
general impact of higher temperatures is likely leading to the application of higher 
pesticide volumes and (Delcour et al., 2015) doses, frequency of application, or different 
varieties of pesticide types (Bloomfield et al., 2006; Goel et al., 2005; Hall et al., 2002; 
Miraglia et al., 2009; Noyes et al., 2009; Rosenzweig et al., 2001). Thus, the changing 
climate and the rising temperatures that come with it, is likely to increase the pesticide 
exposure (Choudhury and Saha, 2020) not only to the direct environment but also in 
higher trophic levels at the end of the food chain (Delcour et al., 2015). 
Furthermore, the global radiation in Sweden is increasing by 0.3% per year and the 
average solar radiation in Sweden has increased by 8% since the mid 1980s from 900 
kWh/m2 (1985) to 1 000 kWh/m² (2016)(SMHI, n.d.). With an increasing solar 
radiation, children and adults are likely to use more sunscreen, making them prone to 
extended exposure towards sunscreens.  Sun protecting cosmetics contain several 
substances, including UV filters, perfumes and preservatives, of which many may 
contain allergenic properties (de Groot and Roberts, 2014). 
 
This review aims to give an understanding of how the human exposure towards 
chemicals may be impacted by Global Climate Change in Sweden. 
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