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1. Introduction 

Pharmaceuticals play a pivotal role in both the human and environmental risk landscapes, and careful 
management of their use is required to mitigate environmental risk as far as possible without impacting 
human health.  

Presently, in the European Union, pharmaceuticals are regulated by the European Medicines Agency 
(EMA), being assessed against a panel of human health metrics to determine whether a product will be 
granted marketing authorisation. An Environmental Risk Assessment (ERA) is nominally required for all 
pharmaceutical substances, but exemptions are common and environmental risk is not considered in final 
authorisation decisions (EMA 2006).  

This has created a system with few incentives to environmentally risk assess pharmaceuticals, and data 
on both the environmental exposure and effects of these substances can be hard to acquire. 
Furthermore, where environmental risk assessment is conducted, focus usually lies on toxicity-driven 
risk, leaving bioaccumulation and especially persistence data even less available.  

Deliverable D.6.2 of the ECORISK 2050 project is described in the original proposal document as a 
“Prioritisation of pharmaceuticals and PHCP (Personal Health Care Products) which pose highest risk”. 
Based on our work with the Norwegian Institute of Public Health (NIPH or FHI), we have created a 
prioritisation list, using our wholesale-derived predicted exposure data and publicly available toxicity data 
to calculate a risk quotient, and supplementing this with persistence and bioaccumulation data where 
available. As no public record of pharmaceuticals and personal care product sales in Norway exists, and 
due to the generally lower toxicity posed by the latter group of substances, we elected to focus this 
exercise entirely on pharmaceutical substances.  

We present, then, below, a prioritisation list of pharmaceuticals sold in Norway between the years 2016-
19, ordered by the toxicity-based risk quotient and with persistence, mobility and bioaccumulation data 
appended where available.   

2. Methods 

Sales data for years 2016-2019 w extracted from the Norwegian Drugs Wholesale Database (Figure 2, 
Sales data), covering all sales to pharmacies, hospitals, nursing homes, and non-pharmacy outlets 
licensed to sell drugs within Norway, including prescriptions, over-the-counter sales, and procurement by 
medical establishments (NIPH 2019). In its raw form this data consisted of per-product sales, such as a 
packet containing multiple sheets of pills, or a suspension of liquid medicine.  

 

Figure 1: Simplified diagram of data extraction and management pipeline. Data and code to be 
made publicly available denoted by the dashed orange box. 

In adherence with NIPH’s commercial confidentiality requirements, all data corresponding to monetary 
values, product names and quantities of packet sold were excluded from the dataset to be published. 

Additional information on individual products (Figure 1, (a) Product information) including number of 
items per package, quantity of active pharmaceutical ingredients (API) per item, and associated unit 
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were obtained separately from the centralised NIPH sales database and matched to sales data using 
internal product codes. In cases where no additional data was available for given products or where 
automatic matching failed, records were checked manually against product contents records online, 
principally the Norwegian pharmaceuticals specialities site Felleskatalogen, the UK Electronic Medicines 
Compendium, and the US resource Drugs.com. Cases where one product contained two or more APIs 
(combination drugs) were split into separate entries for each API to ensure substances were fully 
accounted for. 

Data processing in Access 

The two data sources were imported into a Microsoft Access database (Figure 1, b, c, d, e) and organised 
into a related set of tables. The main table types were data tables, conversion tables, and code lists. The 
main data tables are described below and summarised in Figure 2.   

1) t_Product: the description of each pharmaceutical product (defined by product number), 
including information on the product type and the product amount per package 

2) t_Product_API: the concentration of each API per product  
3) t_Sales_Product: the number of packages sold per product per year  

The main code lists, which contain the ATC and API codes, summarised in Figure 3: 

1) t_Code_ATC: definition of ATC codes found in the sales data  
2) t_Code_API: a complete list of APIs found in the sales data  

 

Figure 2: Simplified diagram of database structure: the main data tables. 

 

Figure 3: Diagram of code lists and conversion tables, defining the many-to-many relationships 
between ATC, ingredient, and API in the database. 
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Information on APIs contained in each product was not available in the original data sources, and instead 
had to be extracted from the ATC codes associated with the sales data. The many-to-many relationship 
between ATC and API is represented by the code lists and junction tables shown in Figure 3. Ingredient 
was added as an intermediate step, accounting for ingredients considered distinct pharmaceutical agents 
under the ATC code system that were not strictly APIs. Subsequently, each product, the associated API 
names associated were extracted from the full ATC name and entered in the table t_Product_API. 

In most cases the information needed for calculating the amount of API per package (i.e., the 
concentration of API in the product and the amount of the product per package) was available in the 
original data source (the product information table). Where this information was not provided, we 
extracted the information manually from the Product name.  

For products where API information could not be found in the included data, it was instead sourced for 
each individual product from the Norwegian pharmaceutical specialties website Felleskatalogen or 
Summaries of Product Characteristics (SPCs) from the pharmaceutical specialties websites of other 
nations. This was also the case for combination products containing two or more APIs.  

Finally, the information on yearly sales (number of packets) per product was stored in the table 
t_Sales_Product. This information was combined with the calculated amount of API per product package 
during data extraction to obtain the total amount of API per year from the sales data. Data were 
exported into flat files for calculation of predicted environmental concentrations and analysis in the 
future.  

Data Processing in R 

The exported dataset (Figure 1, e, f),  was prepared for analysis and publication in R version 4.1.1 “Kick 
Things” (R Core Team 2021).  

Sales weights per product per year were filtered to remove any zero values, and values for which no 
units were assigned, representing records for which the API amount could not be calculated (Figure 4). 
Sales weights were then summed by API by year, and APIs were filtered according to a list of exemptions 
from risk assessment on the basis of non-toxicity (as applies to vitamins, vaccines, antibodies, etc. (EMA 
2006)). The final dataset will be published as a comma-separated values (.csv) file. 

 

Figure 4: Count of overall packages (a) sold in 2019, and unique table records (b) retained at each 
step of data processing, categorised as human or veterinary. Aggregation by API condenses the 

dataset to 718 records, but all component packages are still accounted for (no loss of records (a) 
between steps 4 and 5.  = 

https://www.felleskatalogen.no/medisin


3. Risk Assessment 

PMBT Concepts 

Environmental risk assessment of chemicals is primarily driven by comparing measured or predicted 
exposure concentrations to toxicity (T) expressed as predicted no-effect concentrations. However, EMA 
risk assessment also considers the persistence (P) of chemicals – measured as their half-life in a variety 
of aquatic or terrestrial environments – and their potential to bioaccumulate (B) – typically based on the 
chemical’s affinity for the fatty alcohol octanol in an octanol-water system. These three properties are 
often abbreviated to PBT. 

Beyond this, in recent years growing attention has been paid to the mobility (M) of substances in the 
environment as another important driver of risk (Rüdel et al. 2020). Substance mobility is determined by 
affinity for organic carbon in a carbon-water system. Physical test data for PMB is frequently unavailable, 
and consequently where possible estimated values are used for these parameters; see the section QSARs 
below for more details.  

Predicted Environmental Concentrations 

Predicted Environmental Concentrations of individual APIs in the compartment Surface Water were 
calculated using a modified form (Eq. 1) of the standard refined PECSW equation outlined in the EMA’s 
guidelines for pharmaceutical environmental risk assessment (2006). As no specific bodies of water are 
specified in the guidelines, the model is assumed to apply to all relevant freshwater bodies, i.e., rivers 
and lakes. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑔𝑔 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×(1−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
365 ×𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

   (Eq. 1) 

Table 1: Table of PECSW equation variables and parameters 

Component Unit Description 
g of API sold g The total weight (g) of an API sold in a year 
WWTP removal unitless The proportion of the API removed at WWTP 

(default of 0) 
365 days The number of days in a year 
Wastewater consumption L person-1 day-1 The average wastewater consumption (L) of 

the population of a given area per day 
Population persons The population of a given area 
Dilution factor unitless The ratio of dilution between WWTP effluent 

and receiving waters (default of 10) 
 

Whereas the standard equation estimates sales weights from the maximum dose of a given API and the 
proportion of people in a population taking that API, by using our dataset of pharmaceutical wholesales 
we can input an exact figure for consumption across the entire population of Norway.  

PECs were individually calculated per API, per year, using information on yearly average wastewater 
consumption and Norwegian population, obtained from Statistics Norway. 

  



Predicted No Effect Concentrations  

Toxicity data was obtained in the form of Predicted No Effect Concentrations for 257 APIs from the 
Norwegian Pharmaceutical Specialties website Felleskatalogen (2020), and converted from the original 
concentrations (typically µg/L) into g/L for internal consistency. These PNECs were originally calculated 
by the Swedish Pharmaceutical Specialities website, FASS.se (2019), where full equations and 
constituent test data were given. However, these data could not easily be converted into a machine-
readable format and hence Felleskatalogen’s more accessible, but less transparent dataset was used. In 
any case, a full account of the toxicity data’s origin is impossible, as the studies that produced said data 
are not to the authors’ knowledge publicly available.  

Risk Quotients 

Predicted risks per API per year were calculated as simple Risk Quotients following the standard 
ecotoxicological method (Equation 2): 

Equation 2: Calculation of Risk Quotient (RQ) in surface water from Predicted Environmental 
Concentration (PEC) and Predicted No Effect Concentration (PNEC). (EMA 2006) 

𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
     (Eq. 2) 

QSARs 

PMBT information for APIs is not readily available. To canvas data efficiently for 774 substances, the 
OPERA (Open (Q)SAR) app (EPA 2018) was used to generate estimated parameters through Qualitative 
Structure-Activity Relationships (QSARs), comparing APIs to substances with similar structures.  

The following parameters were generated using OPERA: 

Table 2: QSAR PMT Parameters generated for APIs sold 2016-19 in Norway. 

Property Parameter Comment Thresholds 

Persistence Biodegradation 
half life 

Medium not specified, but 
assumed to be freshwater 

Half-life > 60 days: Persistent 
Half-life > 180 days: Very Persistent 

Bio-
accumulation 

Octanol/water 
adsorption 
coefficient  

Ratio of lipophilicity/hydrophilicity 
parameter used as a trigger value 
for BCF/PBT assessment 

At a pH of 5-9  
Log Kow ≥ 3: BCF assessment trigger 
Log Kow ≥ 4.5: PBT assessment trigger 

 Fish 
bioconcentration 
factor 

Ratio of concentration in an 
organism to that in water 

BCF > 2000: Bioaccumulative 
BCF > 5000: Very Bioaccumulative 

Mobility Soil/sediment 
adsorption 
coefficient 

Ratio of concentration of 
substance in organic carbon vs in 
solution at equilibrium  

At a pH of 4-9  
Log KOC < 4: Mobile 
Log KOC < 3: Very Mobile 

 

Where an API was not in the Applicability Domain for generating a QSAR parameter, the entry was left 
blank. 

  



 

4. Results 

Dataset Overview 

More than 700 API sales weights (Table 3) were calculated for each year of sales, representing 753 
unique APIs across the four year period. Of the total packages recorded sold from 2016-19, across all 
APIs, a mean of 6% were removed during processing, leaving the final summarised dataset 
representative of 94% of all input sales. 

Table 3: Table of number of unique products input from starting dataset and number of unique API 
output, by year. 

Year Starting dataset entries Unique APIs 
2016 5,729 701 
2017 5,845 711 
2018 5,911 712 
2019 5,921 718 

 

Comparison with Felleskatalogen Data 

The Norwegian Pharmaceutical Specialities website Felleskatalogen maintains a rolling risk assessment 
on a yearly basis of pharmaceutical risk, using sales data from the market research firm Farmastat AS. 
In order to benchmark the completeness and accuracy of our dataset, we compared out calculated sales 
weights to theirs.  

Figure 5 summarises agreement between the two datasets. A mean (blue line) difference extremely close 
to 0 on the y-axis indicates little average difference between calculations. However, a number of 
substances below the red line (a) and present in Felleskatalogen records but absent in our records (c) 
indicate that further work on our part is needed to determine why sales weights for these substances do 
not appear.  

https://www.farmastat.no/


 

Figure 5: Bland-Altman or Tukey mean-difference plot (a) of difference (y axis) and mean (x axis) 
of log10-transformed sales weight data from our and Felleskatalogen sources. Blue line marks 
mean difference, and red 95% Confidence Intervals. Also included are dot plots of APIs only 
calculated in our data (b) and only by Felleskatalogen (c), graphed across log10 sales weight.   

  



APIs Ordered by Risk Quotient 

As a first pass assessment of API risk, risk quotients have been calculated for all APIs where PNECs are 
available, using the highest PEC over the four years. In total, RQs were calculated for 173 APIs, 
representing 23% of total APIs sold in the period. Of these RQs, one (levonorgestrel) was extremely high 
(RQ > 100), five (ciprofloxacin, abiraterone, estradiol, ibuprofen, amoxicillin) were high (RQ > 10), nine 
were moderate (RQ > 1), 13 low (RQ > 0.1) and 145 negligible (RQ < 0.01). The top 20 highest RQs are 
summarised below (Table 4).  

To provide for broad, intuitive groups, APIs were roughly sorted into classes based on their ATC level 2 
codes (for instance, N02 – analgesics). Note that due to the anatomical structure of ATC codes, this has 
resulted in some splitting of substances such as antiseptics and analgesics that can be applied topically 
to different parts of the body.  

Table 4: APIs, sorted by RQs calculated from highest PECs over the four years and publicly 
available PNECs. The top 20 of a total of 145 assessed substances are shown. Substances are 

grouped into classes adapted from ATC level 2 codes. 

API Class RQ (2 s.f.) 

levonorgestrel sex hormones/genital system 150 

ciprofloxacin ear treatments 56 

abiraterone endocrine therapy 24 

estradiol sex hormones/genital system 17 

ibuprofen painkillers 12 

amoxicillin antibacterials 11 

paracetamol analgesics 9.2 

chlorhexidine antiseptics 7.5 

norethisterone sex hormones/genital system 6.7 

naproxen antiinflammatories 6.6 

etonogestrel sex hormones/genital system 3.8 

desogestrel sex hormones/genital system 3.5 

terbinafine antifungals 3.4 

simvastatin lipid-modifying 3.3 

fulvestrant endocrine therapy 2.7 

nicotine other nervous system 0.56 

dronedarone cardiac therapy 0.49 

amiodarone cardiac therapy 0.41 

mometasone obstructive airway treatments 0.35 

propranolol beta blockers 0.28 

 

  



 

Risk and Missing Data by Class 

To provide for comparison between classes, RQs were binned into groups based on RQ order of 
magnitude and ordered by total number of component APIs (Table 5). As can be seen below, even 
relatively well-documented groups – e.g., sex hormones and diabetes therapies – RQs were unable to be 
calculated for a sizable proportion of APIs.  

Table 5: Risk Quotients per order of magnitude, by API class based on level 2 ATC code. Arranged 
by total number of APIs per class. NA (%) denotes the proportion of APIs in a category for which 

no RQ could be calculated due to a lack of readily available toxicity data.. 

 RQ  
Class > 100 > 10 > 1 > 0.1 < 0.1 NA (%) Total 
antibacterials  1  1 8 81 52 
antineoplastics     4 91 47 
antiviral    1 22 47 43 
psycholeptics (depressants)     8 80 41 
eye treatments     6 83 36 
psychoanaleptics (stimulants)    2 8 69 32 
sex hormones/genital system 1 2 3 1 4 56 25 
obstructive airway treatments    1 13 39 23 
antiepileptics    1 10 50 22 
renin-angiotensin system     9 55 20 
analgesics   1  6 63 19 
antiinflammatories   1  2 84 19 
other nervous system    1 1 89 18 
urologicals     3 82 17 
cardiac therapy    2 1 81 16 
diabetes    1 9 33 15 
anaesthetics     0 100 15 
antihistamines     4 71 14 
immunosuppressants     7 50 14 
antihelmintics    1 0 93 14 

 

Persistence, Bioaccumulation, and Mobility QSARs 

Information on API bioaccumulation and biodegradation is available from Felleskatalogen only in the form 
of hazard statements, where substances are classified as being of (translated from the Norwegian) 
unknown, low, or high bioaccumulative potential, and unknown, biodegradable in the environment, 
slowly biodegradable, or potentially persistent. However, these statements are only available for 245 
APIs, meaning alternative approaches were needed for the remaining substances.  

OPERA was used to predict QSAR bioaccumulation factors, biodegradation half-lives and soil/sediment 
adsorption coefficients for APIs where sufficient data on similar molecules was available. These predicted 
results were then compared to standard (B, P) and proposed (M) thresholds as discussed in Table 2. 
Where no prediction was possible, or the API fell outside of the applicability domain of the QSAR model, 
entries are left blank. 

In total, of the 753 unique APIs input to OPERA, 507 applicable bioaccumulation parameters, 54 
persistence parameters and 437 mobility parameters were predicted. However, as can be seen below, 
crossover between substances with valid RQs and valid persistence, mobility and bioaccumulation 
parameters was limited. Of the 173 APIs with RQs, only 104 bioaccumulation parameters, 6 persistence 
parameters and 97 mobility parameters could be predicted.  



Table 6: Top 20 highest RQ substances. Where available, empirical Persistence and 
Bioaccumulation hazard statements (low, moderate, high), in bold, were sourced from 

Felleskatalogen records. Otherwise, OPERA QSARs (nB – not Bioaccumulative/B - 
Bioaccumulative/vB – very Bioaccumulative, etc.) were appended. A blank space indicates neither 

test data nor a QSAR within model applicability domain could be found or generated.  

   Bioaccumulation, Persistence and 
Mobility Levels (Felleskatalogen, 

OPERA QSARs) 
API Name Class RQ (2 s.f.) B P M 

levonorgestrel sex hormones/genital system 150 low high nM 

ciprofloxacin ear treatments 56 nB  vM 

abiraterone endocrine therapy 24 high low nM 

ethinylestradiol sex hormones/genital system 23 nB  nM 

estradiol sex hormones/genital system 17 low moderate nM 

ibuprofen painkillers 12 low low vM 

amoxicillin antibacterials 11 nB  vM 

paracetamol analgesics 9.2 low moderate vM 

chlorhexidine antiseptics 7.5    

norethisterone sex hormones/genital system 6.7 nB  nM 

naproxen antiinflammatories 6.6 nB  vM 

etonogestrel sex hormones/genital system 3.8 low moderate nM 

desogestrel sex hormones/genital system 3.5 low moderate nM 

simvastatin lipid-modifying 3.3 low low  

fulvestrant endocrine therapy 2.7 low low  

vortioxetine psychoanaleptics (stimulants) 0.96 nB P M 

nicotine other nervous system 0.56 nB  vM 

dronedarone cardiac therapy 0.49 low high  

drospirenone sex hormones/genital system 0.47 low high  

amiodarone cardiac therapy 0.41 high high nM 
 

Persistence, Mobility, Bioaccumulation and Toxicity predictions are further summarised in Figure 6 below. 
Data availability is notably inconsistent between classes, and predictions of persistence are apparent 
almost only for nervous system pharmaceuticals. Likewise, of the 104 predicted bioaccumulation factors, 
only mitotane, an antineoplastic that inhibits steroid synthesis and promotes cytostasis, is predicted to 
pose a high bioaccumulative risk, due to its extensively halogenated and difficult-to-break down 
structure. Consequently, we elected to include instead a substance’s highest predicted log octanol-water 
partition coefficient (log Kow or Log D) from QSAR modelling at pH 5.5 and 7.4. Here thresholds are taken 
from the EMA risk assessment triggers for further assessment: Where Kow ≥ 3 a bioaccumulation 
threshold is needed, while at Kow ≥ 4.5 a full PMT assessment is triggered. 

By contrast, mobility was able to be predicted for a sizable proportion of studied APIs, likely due to the 
simplicity of the relevant parameter. Mobile and Very Mobile substances are well represented across the 
14 target systems, likely an unintended side-effect of their need for mobility to function effectively as 
therapeutics.   



 

Figure 6: Predicted Risk Quotient, Biodegradation Half Life, low Octanol-Water Coefficient, and log 
Carbon Adsorption Coefficient (Koc) by API and target organ system. Sold white lines indicate the 
thresholds of PMBT classification, above which substances are considered to pose a particular 
hazard. Note that graphs b – c are based entirely on QSARs, and consequently may contradict 
Table 4. Each white dot represents an API, only those above a threshold are identified by name 
(where space permits). 

5. Conclusions 

Through the adaptation of FHI’s Wholesale Drug Database it has provided possible to predict exposure 
year-on-year for over 700 APIs, representing 96% of recorded sales. This represents an extremely useful 
resource for our studies and others’ and will be made publicly accessible as soon as the dataset has been 
fully checked and verified. However, it only proved possible to predict risk for 173 of these APIs, and 
persistence, bioaccumulation and mobility data was similarly scarce.  

Of these 173 APIs, 15 had an RQ above the conventional cut-off of 1. Across these prioritise high-risk 
substances, however, bioaccumulation and persistence data were limited, with test data available in 53% 
of cases and QSARs calculable in a further 17%, while no repository of mobility data is available due to it 
not being an official parameter.  

Across high risk substances, levonorgestrel’s toxicity at low levels and high potential for persistence 
represents cause for concern and should be investigated more thoroughly. Likewise, the moderate or 
unknown persistence of many other high-risk sex hormones/genital system APIs raises the possibility 
that over time, concentrations in the environment may build up beyond the ability of the Surface Water 
Risk Quotient’s ability to model, leading to underestimates of environmental risk. Furthermore, the 
predicted mobility of various common antibacterials and painkillers (ciprofloxacin, ibuprofen, 
paracetamol, chlorhexidine) also merits study to determine the substances’ actual mobility in vitro and in 
the environment.  



In future, we hope to apply the approach explored in this report to further historical sales records, to 
allow for forecasting of future risk based on sales patterns, demographic, and climate change. Given the 
unique social role played by pharmaceuticals, a better understanding of their contribution to 
environmental risk is needed to balance this against their health benefits.  
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